Feng Li1; Li Hui1; Inhester Bernd2; Chen Bo3; Ying Beili1; Lu Lei1; Gan Weiqun1
Source Publicationresearchinastronomyandastrophysics
AbstractThe advanced space-based solar observatory (aso-s) mission aims to explore the two most spectacular eruptions on the sun: solar flares and coronal mass ejections (cmes), and their magnetism. for the study of cmes, the payload lyman-alpha solar telescope (lst) has been proposed. it includes a traditional white-light coronagraph and a lyman-alpha coronagraph which opens a new window to cme observations. polarization measurements taken by white-light coronagraphs are crucial for deriving fundamental physical parameters of cmes. to make such measurements, there are two options for a stokes polarimeter which have been applied by existing white-light coronagraphs for space missions. one uses a single or triple linear polarizer, the other involves both a half-wave plate and a linear polarizer. we find that the former option is subject to less uncertainty in the derived stokes vector propagating from detector noise. the latter option involves two plates which are prone to internal reflections and may have a reduced transmission factor. therefore, the former option is adopted as our stokes polarimeter scheme for lst. based on the parameters of the intended linear polarizer(s) colorpol provided by codixx and the half-wave plate 2-apw-l2-012c by altechna, it is further shown that the imperfect maximum transmittance of the polarizer significantly increases the variance amplification of stokes vector by at least about 50% when compared with the ideal case. the relative errors of stokes vector caused by the imperfection of colorpol polarizer and the uncertainty due to the polarizer assembly in the telescope are estimated to be about 5%. among the considered parameters, we find that the dominant error comes from the uncertainty in the maximum transmittance of the polarizer.
Document Type期刊论文
2.Max-Planck-Institut fur Sonnensystemforschung
First Author Affilication中国科学院紫金山天文台
Recommended Citation
GB/T 7714
Feng Li,Li Hui,Inhester Bernd,et al. ontheerroranalysesofpolarizationmeasurementsofthewhitelightcoronagraphaboardasos[J]. researchinastronomyandastrophysics,2019,19(4):10.
APA Feng Li.,Li Hui.,Inhester Bernd.,Chen Bo.,Ying Beili.,...&Gan Weiqun.(2019).ontheerroranalysesofpolarizationmeasurementsofthewhitelightcoronagraphaboardasos.researchinastronomyandastrophysics,19(4),10.
MLA Feng Li,et al."ontheerroranalysesofpolarizationmeasurementsofthewhitelightcoronagraphaboardasos".researchinastronomyandastrophysics 19.4(2019):10.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Feng Li]'s Articles
[Li Hui]'s Articles
[Inhester Bernd]'s Articles
Baidu academic
Similar articles in Baidu academic
[Feng Li]'s Articles
[Li Hui]'s Articles
[Inhester Bernd]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Feng Li]'s Articles
[Li Hui]'s Articles
[Inhester Bernd]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.