Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
Aghanim, N.52; Akrami, Y.54,56; Ashdown, M.6,63; Aumont, J.52; Baccigalupi, C.78; Ballardini, M.29,44,47; Banday, A. J.9,91; Barreiro, R. B.58; Bartolo, N.28,59; Basak, S.84; Benabed, K.53,90; Bersanelli, M.32,45; Bielewicz, P.9,75,78; Bonaldi, A.61; Bonavera, L.16; Bond, J. R.8; Borrill, J.12,88; Bouchet, F. R.53,86; Burigana, C.30,44,47; Calabrese, E.81; Cardoso, J. -F.1,53,66,67; Challinor, A.11,55,63; Chiang, H. C.7,23; Colombo, L. P. L.20,60; Combet, C.68; Crill, B. P.10,60; Curto, A.6,58,63; Cuttaia, F.44; de Bernardis, P.31; de Rosa, A.44; de Zotti, G.42,78; Delabrouille, J.1; Di Valentino, E.53,86; Dickinson, C.61; Diego, J. M.58; Dore, O.10,60; Ducout, A.51,53; Dupac, X.35; Dusini, S.59; Efstathiou, G.55,63; Elsner, F.73; Ensslin, T. A.73; Eriksen, H. K.56; Fantaye, Y.2,18; Finelli, F.44,47; Forastieri, F.30,48; Frailis, M.43; Franceschi, E.44; Frolov, A.85; Galeotta, S.43; Galli, S.62; Ganga, K.1; Genova-Santos, R. T.15,57; Gerbino, M.31,76,89; Gonzalez-Nuevo, J.16,58; Gorski, K. M.60,93; Gratton, S.55,63; Gruppuso, A.44,47; Gudmundsson, J. E.23,89; Herranz, D.58; Hivon, E.53,90; Huang, Z.82; Jaffe, A. H.51; Jones, W. C.23; Keihanen, E.22; Keskitalo, R.12; Kiiveri, K.22,41; Kim, J.73; Kisner, T. S.71; Knox, L.25; Krachmalnicoff, N.78; Kunz, M.2,14,52; Kurki-Suonio, H.22,41; Lagache, G.5,52; Lamarre, J. -M.65; Lasenby, A.6,63; Lattanzi, M.30,48; Lawrence, C. R.60; Le Jeune, M.1; Levrier, F.65; Lewis, A.21; Liguori, M.28,59; Lilje, P. B.56; Lilley, M.53,86; Lindholm, V.22,41; Lopez-Caniego, M.35; Lubin, P. M.26; Ma, Y. -Z.61,77,80; Macias-Perez, J. F.68; Maggio, G.43; Maino, D.32,45; Mandolesi, N.30,44; Mangilli, A.52,64; Maris, M.43; Martin, P. G.8; Martinez-Gonzalez, E.58; Matarrese, S.28,37,59; Mauri, N.47; McEwen, J. D.74; Meinhold, P. R.26; Mennella, A.32,45; Migliaccio, M.3,49; Millea, M.25,53,87; Miville-Deschenes, M. -A.8,52; Molinari, D.30,44,48; Moneti, A.53; Montier, L.9,91; Morgante, G.44; Moss, A.83; Narimani, A.19; Natoli, P.3,30,48; Oxborrow, C. A.13; Pagano, L.52; Paoletti, D.44,47; Partridge, B.40; Patanchon, G.1; Patrizii, L.47; Pettorino, V.38,39; Piacentini, F.31; Polastri, L.30,48; Polenta, G.4; Puget, J. -L.52; Rachen, J. P.17; Racine, B.56; Reinecke, M.73; Remazeilles, M.1,52,61; Renzi, A.50,78; Rocha, G.10,60; Rossetti, M.32,45; Roudier, G.1,60,65; Rubino-Martin, J. A.15,57; Ruiz-Granados, B.92; Salvati, L.52; Sandri, M.44; Savelainen, M.22,41,72; Scott, D.19; Sirignano, C.28,59; Sirri, G.47; Stanco, L.59; Suur-Uski, A. -S.22,41; Tauber, J. A.36; Tavagnacco, D.33,43; Tenti, M.46; Toffolati, L.16,44,58; Tomasi, M.32,45; Tristram, M.64; Trombetti, T.30,44,47; Valiviita, J.22,41; Van Tent, F.69,70; Vielva, P.58; Villa, F.44; Vittorio, N.34; Wandelt, B. D.27,53,90; Wehus, I. K.56,60; White, M.24; Zacchei, A.43; Zonca, A.79
Corresponding AuthorGalli, S.( ; Millea, M.(
AbstractThe six parameters of the standard Lambda CDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium tau, the baryon density omega(b), the matter density omega(m), the angular size of the sound horizon theta(*), the spectral index of the primordial power spectrum, n(s), and A(s)e(-2 pi) (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set (with multipole moment l < 800 in the Planck temperature power spectrum) and an all angular-scale data set (l < 2500 Planck temperature power spectrum), each with a prior on tau of 0.07 +/- 0.02. We find that the shifts, in units of the 1 sigma expected dispersion for each parameter, are {Delta tau, Delta A(s)e(-2 tau), Delta n(s), Delta omega(m), Delta omega(b), Delta theta(*)} = {-1.7, -2.2, 1.2, 2.0, 1.1, 0.9}, with a chi(2) value of 8.0. We find that this chi(2) value is exceeded in 15% of our simulated data sets, and that a parameter deviates by more than 2.2 sigma in 9% of simulated data sets, meaning that the shifts are not unusually large. Comparing l < 800 instead to l > 800, or splitting at a different multipole, yields similar results. We examined the l < 800 model residuals in the l > 800 power spectrum data and find that the features there that drive these shifts are a set of oscillations across a broad range of angular scales. Although they partly appear similar to the effects of enhanced gravitational lensing, the shifts in Lambda CDM parameters that arise in response to these features correspond to model spectrum changes that are predominantly due to non-lensing effects; the only exception is tau, which, at fixed A(s)e(-2 tau), affects the l > 800 temperature power spectrum solely through the associated change in As and the impact of that on the lensing potential power spectrum. We also ask, "what is it about the power spectrum at l < 800 that leads to somewhat different best-fit parameters than come from the full l range?" We find that if we discard the data at l < 30, where there is a roughly 2 sigma downward fluctuation in power relative to the model that best fits the full l range, the l < 800 best-fit parameters shift significantly towards the l < 2500 best-fit parameters. In contrast, including l < 30, this previously noted "low-l deficit" drives ns up and impacts parameters correlated with ns, such as omega(m) and H-0. As expected, the l < 30 data have a much greater impact on the l < 800 best fit than on the l < 2500 best fit. So although the shifts are not very significant, we find that they can be understood through the combined effects of an oscillatory-like set of high-l residuals and the deficit in low-l power, excursions consistent with sample variance that happen to map onto changes in cosmological parameters. Finally, we examine agreement between Planck TT data and two other CMB data sets, namely the Planck lensing reconstruction and the TT power spectrum measured by the South Pole Telescope, again finding a lack of convincing evidence of any significant deviations in parameters, suggesting that current CMB data sets give an internally consistent picture of the Lambda CDM model.
Keywordcosmology: observations cosmic background radiation cosmological parameters cosmology: theory
Indexed BySCI
WOS Research AreaAstronomy & Astrophysics
WOS SubjectAstronomy & Astrophysics
WOS IDWOS:000415859600004
Citation statistics
Document Type期刊论文
Corresponding AuthorGalli, S.; Millea, M.
Affiliation1.Univ Paris Diderot, CNRS IN2P3, APC Astroparticule & Cosmol, CEA lrfu Observ Paris,Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
2.African Inst Math Sci, 6-8 Melrose Rd, ZA-7945 Cape Town, South Africa
3.Agenzia Spaziale Italiana Sci Data Ctr, Via Politecn Snc, I-00133 Rome, Italy
4.Agenzia Spaziale Italiana, Via Politecn Snc, I-00133 Rome, Italy
5.Aix Marseille Univ, CNRS, LAM, F-13013 Marseille, France
6.Univ Cambridge, Cavendish Lab, Astrophys Grp, J J Thomson Ave, Cambridge CB3 0HE, England
7.Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa
8.Univ Toronto, CITA, 60 St George St, Toronto, ON M5S 3H8, Canada
9.CNRS, IRAP, 9 Av Colonel Roche,BP 44346, F-31028 Toulouse 4, France
10.CALTECH, Pasadena, CA 91125 USA
11.Univ Cambridge, Ctr Theoret Cosmol, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
12.Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA
13.Tech Univ Denmark, Natl Space Inst, DTU Space, Elektrovej 327, DK-2800 Lyngby, Denmark
14.Univ Geneva, Dept Phys Theor, 24 Quai E Ansermet, CH-1211 Geneva 4, Switzerland
15.Univ La Laguna, Dept Astrofis, Tenerife 38206, Spain
16.Univ Oviedo, Dept Fis, Avda Calvo Sotelo S-N, Oviedo 33007, Spain
17.Radboud Univ Nijmegen, Dept Astrophys, IMAPP, POB 9010, NL-6500 GL Nijmegen, Netherlands
18.Univ Stellenbosch, Dept Math, ZA-7602 Stellenbosch, South Africa
19.Univ British Columbia, Dept Phys & Astron, 6224 Agr Rd, Vancouver, BC, Canada
20.Univ Southern Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA
21.Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England
22.Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, Helsinki 00014, Finland
23.Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
24.Univ Calif Berkeley, Dept Phys, Berkeley, CA 94607 USA
25.Univ Calif Davis, Dept Phys, 1 Shields Ave, Davis, CA 95616 USA
26.Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
27.Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61820 USA
28.Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy
29.Univ Bologna, Dipartimento Fis & Astron, Alma Mater Studiorum, Viale Berti Pichat 6-2, I-40127 Bologna, Italy
30.Univ Ferrara, Dipartimento Fis & Sci Terra, Via Saragat 1, I-44122 Ferrara, Italy
31.Univ Roma La Sapienza, Dipartimento Fis, Ple A Moro 2, I-00185 Rome, Italy
32.Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
33.Univ Trieste, Dipartimento Fis, Via A Valerio 2, I-34127 Trieste, Italy
34.Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci 1, I-00133 Rome, Italy
35.European Space Agcy, ESAC, Planck Sci Off, Camino Bajo Castillo,S-N Urbanizac Villafranca Ca, Madrid 28692, Spain
36.European Space Agcy, Estec, Keplerlaan 1, NL-2201 AZ Noordwijk, Netherlands
37.Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
38.HGSFP, Philosophenweg 16, D-69120 Heidelberg, Germany
39.Heidelberg Univ, Theoret Phys Dept, Philosophenweg 16, D-69120 Heidelberg, Germany
40.Haverford Coll, Dept Astron, 370 Lancaster Ave, Haverford, PA 19041 USA
41.Univ Helsinki, Helsinki Inst Phys, Gustaf Hallstromin Katu 2, Helsinki 00014, Finland
42.INAF, Osservatorio Astronom Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy
43.INAF, Osservatorio Astronom Trieste, Via GB Tiepolo 11, I-40127 Trieste, Italy
44.INAF IASF Bologna, Via Gobetti 101, I-40129 Bologna, Italy
45.INAF IASF Milano, Via E Bassini 15, I-20133 Milan, Italy
46.INFN CNAF, Viale Berti Pichat 6-2, I-40127 Bologna, Italy
47.Ist Nazl Fis Nucl, Sez Bologna, Viale Berti Pichat 6-2, I-40127 Bologna, Italy
48.Ist Nazl Fis Nucl, Sez Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
49.Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma 2, Via Ric Sci 1, I-00185 Rome, Italy
50.Ist Nazl Fis Nucl, Natl Inst Nucl Phys, Via Valerio 2, I-34127 Trieste, Italy
51.Imperial Coll London, Blackett Lab, Astrophys Grp, Prince Consort Rd, London SW7 2AZ, England
52.Univ Paris 11, Univ Paris Saclay, CNRS, Inst Astrophys Spatiale, Bat 121, F-91405 Orsay, France
53.CNRS, Inst Astrophys Paris, UMR 7095, 98Bis Blvd Arago, F-75014 Paris, France
54.Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
55.Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
56.Univ Oslo, Inst Theoret Astrophys, N-0371 Oslo, Norway
57.Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38205, Spain
58.Univ Cantabria, CSIC, Inst Fis Cantabria, Avda Castros S-N, E-39005 Santander, Spain
59.Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
60.CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA
61.Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England
62.Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
63.Kavli Inst Cosmol Cambridge, Madingley Rd, Cambridge CB3 0HA, England
64.Univ Paris 11, LAL, CNRS, IN2P3, F-91898 Orsay, France
65.Observ Paris, CNRS, LERMA, 61 Ave Observ, F-75014 Paris, France
66.CNRS, Lab Traitement & Commun Informat, UMR 5141, 46 Rue Barrault, F-75634 Paris 13, France
67.Telecom ParisTech, 46 Rue Barrault, F-75634 Paris 13, France
68.Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, 53 Rue Martyrs, F-38026 Grenoble, France
69.Univ Paris Sud 11, Lab Phys Theor, Batiment 210, F-91405 Orsay, France
70.CNRS, Batiment 210, F-91405 Orsay, France
71.Lawrence Berkeley Natl Lab, Berkeley, CA USA
72.Aalto Univ, Dept Appl Phys, Low Temp Lab, Espoo 00076, Finland
73.Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany
74.Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England
75.Polish Acad Sci, Nicolaus Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland
76.Nordita Nord Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
77.Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China
78.SISSA, Astrophys Sector, Via Bonomea 265, I-34136 Trieste, Italy
79.Univ Calif San Diego, San Diego Supercomputer Ctr, 9500 Gilman Dr, La Jolla, CA 92093 USA
80.Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa
81.Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales
82.Sun Yat Sen Univ, Sch Phys & Astron, 135 Xingang Xi Rd, Guangzhou, Guangdong 510006, Peoples R China
83.Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
84.Indian Inst Sci Educ & Res Thiruvananthapuram IIS, Sch Phys, Trivandrum 695016, Kerala, India
85.Simon Fraser Univ, Dept Phys, 8888 Univ Dr, Burnaby, BC, Canada
86.UPMC, Inst Astrophys Paris, Sorbonne Univ, UMR 7095, 98bis Blvd Arago, F-75014 Paris, France
87.Sorbonne Univ, Inst Lagrange Paris, 98bis Blvd Arago, F-75014 Paris, France
88.Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
89.Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden
90.UPMC, UMR 7095, Univ Paris 06, 98bis Blvd Arago, F-75014 Paris, France
91.Univ Toulouse, IRAP, UPS OMP, F-31028 Toulouse 4, France
92.Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada 18071, Spain
93.Univ Warsaw Observ, Aleje Ujazdowskie 4, PL-00478 Warsaw, Poland
Recommended Citation
GB/T 7714
Aghanim, N.,Akrami, Y.,Ashdown, M.,et al. Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters[J]. ASTRONOMY & ASTROPHYSICS,2017,607:27.
APA Aghanim, N..,Akrami, Y..,Ashdown, M..,Aumont, J..,Baccigalupi, C..,...&Zonca, A..(2017).Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters.ASTRONOMY & ASTROPHYSICS,607,27.
MLA Aghanim, N.,et al."Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters".ASTRONOMY & ASTROPHYSICS 607(2017):27.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Aghanim, N.]'s Articles
[Akrami, Y.]'s Articles
[Ashdown, M.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Aghanim, N.]'s Articles
[Akrami, Y.]'s Articles
[Ashdown, M.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Aghanim, N.]'s Articles
[Akrami, Y.]'s Articles
[Ashdown, M.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.