中国科学院紫金山天文台机构知识库
Advanced  
PMO OpenIR  > 行星科学与深空探测实验室  > 期刊论文
题名: Effects of manifold correction methods on chaos indicators
作者: Ma, Da-Zhu1; Long, Zhi-Chao2; Zhu, Yu2
刊名: CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY
出版日期: 2015-09-01
卷号: 123, 期号:1, 页码:45-61
关键词: Manifold correction method ; Numerical integration ; Chaos ; Least squares correction ; Lyapunov exponents ; FLI ; SALI ; RLI
学科分类: 天文和天体物理
DOI: 10.1007/s10569-015-9628-1
文章类型: Article
英文摘要: The manifold approach of Nacozy et al. (Astrophys Space Sci 14:40-51, 1971), the approximate velocity correction method of Wu et al. (Astron J 133:2643-2653, 2007), and the velocity scaling method of Ma et al. (New Astron 13:216-223, 2008a) are some of the available manifold correction methods. They have been highly successful at maintaining invariant integrals in two-body problems and the Sun-Jupiter-Saturn system. This paper discusses their efficiency on chaos indicators. Because the planar circular restricted three-body problem involves the Jacobi constant and chaotic phenomena, it is preferable to check the numerical performances of manifold corrections. First, we find that a low-order algorithm combined with manifold corrections can greatly improve the precision of the Jacobi constant . Then, numerical experiments show that these manifold correction methods have the same performance in Poincar, sections, Lyapunov exponents, fast Lyapunov indicators, smaller alignment indices, and relative finite time Lyapunov indicators. Moreover, manifold corrections not only allow for the use of larger step sizes compared to low-order algorithms without correction but also save substantial computation time compared to the high-order algorithm RKF7(8). In particular, the velocity scaling method of Ma et al. (2008a) lends itself to practical application in long-term integration.
WOS标题词: Science & Technology ; Physical Sciences
类目[WOS]: Astronomy & Astrophysics ; Mathematics, Interdisciplinary Applications
研究领域[WOS]: Astronomy & Astrophysics ; Mathematics
关键词[WOS]: EFFICIENT ORBIT INTEGRATION ; RESTRICTED 3-BODY PROBLEM ; INDIVIDUAL KEPLER ENERGIES ; PHASE-SPACE STRUCTURE ; MULTIDIMENSIONAL SYSTEMS ; NUMERICAL EXPERIMENTS ; SYMPLECTIC MAPPINGS ; HAMILTONIAN-SYSTEMS ; LYAPUNOV INDICATOR ; PERIODIC-ORBITS
收录类别: SCI
所属项目名称: PMO_LIB-IR
语种: 英语
WOS记录号: WOS:000359161100003
Citation statistics:
内容类型: 期刊论文
URI标识: http://libir.pmo.ac.cn/handle/332002/14909
Appears in Collections:行星科学与深空探测实验室_期刊论文
太阳活动的多波段观测研究团组_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
2015018.pdf(1567KB)----限制开放View 联系获取全文

作者单位: 1.Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China
2.Hubei Univ Nationalities, Sch Sci, Enshi 445000, Peoples R China
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Ma, Da-Zhu]'s Articles
[Long, Zhi-Chao]'s Articles
[Zhu, Yu]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Ma, Da-Zhu]‘s Articles
[Long, Zhi-Chao]‘s Articles
[Zhu, Yu]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 2015018.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2018  中国科学院紫金山天文台 - Feedback
Powered by CSpace