Simulation of the performance of a five-junction array for 780–950 GHz

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 Supercond. Sci. Technol. 15 1717

(http://iopscience.iop.org/0953-2048/15/12/317)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 159.226.72.254
The article was downloaded on 20/02/2012 at 07:19

Please note that terms and conditions apply.
Simulation of the performance of a five-junction array for 780–950 GHz

S C Shi¹, M J Wang² and T Noguchi³

¹ Purple Mountain Observatory, Nanjing, JiangSu 210008, People’s Republic of China
² Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Republic of China, (Taiwan)
³ Nobeyama Radio Observatory, NAOJ, Nobeyama, Nagano 384-13, Japan

Received 30 May 2002, in final form 12 July 2002
Published 22 November 2002
Online at stacks.iop.org/SUST/15/1717

Abstract
The performance of a five-junction (Nb/AlOₓ/Nb) array is characterized in the frequency range of 780–950 GHz for different wiring and ground layers of the thin-film microstrip lines of the junction tuning inductance and the associated impedance transformer. Three kinds of thin films (i.e., Nb, Al and NbTiN) are taken for this investigation. The individual SIS junctions of the five-junction array have an area of 1 µm² and a critical current density of 10 kA cm⁻². The performance of parallel-connected twin junctions, which have the same junction parameters as those of the five-junction array, is also studied for comparison.

1. Introduction
As is well known, it is effective to enlarge the bandwidth of SIS mixers by increasing the critical current density of the SIS junction or adopting broadband mixing circuitry. However, the higher the junction’s critical current density J_c is, the lower the junction quality (i.e., smaller R_sub(2 mV)/R_n) becomes. SIS junctions of a small quality factor usually have low mixing conversion gain and high noise temperature, especially at submillimetre wavelengths. Hence it is of particular interest to develop submm SIS mixers with low-J_c junctions (say less than 10 kA cm⁻² for Nb ones) incorporated with broadband junction tuning circuitry. Distributed junction arrays have demonstrated broadband performance at frequencies below the gap frequency (∼680 GHz) of Nb SIS junctions [1, 2]. It still remains unclear, however, whether they can perform well beyond the junction’s gap frequency as far as the thin-film losses of the junction tuning inductance (longer than lumped cases) and the associated impedance transformer (usually with larger impedance transformation ratio [3]) are concerned.

To develop a 780–950 GHz SIS mixer, we investigated the performance of a five-junction (Nb/AlOₓ/Nb) array and compare it with that of parallel-connected twin junctions. Different superconducting and normal-metal thin films such as Nb, Al and NbTiN were adopted as the wiring and ground layers of the thin-film microstrip lines of the junction tuning inductance and the associated impedance transformer. We also examined the effects of the junction quality and film thickness on the mixing performance of the two investigated tuning circuits.

2. Simulation model
For both the five-junction array and the parallel-connected twin junctions, the individual SIS junctions were assumed to have an area of 1 µm² and a critical current density of 10 kA cm⁻². Note that the junction’s specific capacitance and product of I_cR_n were taken as 90 fF µm⁻² and 1.95 mV, respectively. The normal-state resistance of each individual junction was therefore equal to 19.5 Ω. We had two junction I–V curves of different quality factors, which were digitized from the real I–V curves of two SIS junctions (refer to sisiv-1 and sisiv-2 in figure 1). It should be pointed out that during simulation, the two-junction I–V curves employed here were indeed normalized to fit the normal-state resistance of the individual junctions. An impedance transformer was included for the two cases to have good RF matching between the junction tuning circuit and a real mixer block for 780–950 GHz (scaled from a 660 GHz one [4]), whose embedding impedance (normalized to 35 Ω) was calculated by HFSS⁴ (refer to figure 2).

The mixing model of the five-junction array and parallel-connected twin junctions used here is almost the same as

⁴ Ansoft High-Frequency Structure Simulator, Ansoft Corporation, Four Station Square, 200 Pittsburgh, PA 15219-1119, USA.
equivalent short-circuited noise current at the input port for all to the input port of the junction array and then having a different small-signal sidebands) of the individual junctions array by transforming the noise currents (thermal and shot, at the equivalent noise correlation matrix $[H]$ for the junction equivalent lumped impedance and admittance for the tuning junction array was then obtained by combining the conversion amplitude and phase, distribution among the individual SIS junctions, by assuming a fixed reduced LO voltage (α) for the last junction (according to the signal transmission direction). The equivalent conversion admittance matrix $[Y]$ for the junction array was then obtained by combining the conversion admittance matrices of the individual SIS junctions with the equivalent lumped impedance and admittance for the tuning microstrip line between two individual junctions. We had the equivalent noise correlation matrix $[H]$ for the junction array by transforming the noise currents (thermal and shot, at different small-signal sidebands) of the individual junctions to the input port of the junction array and then having an equivalent short-circuited noise current at the input port for all the noise contributions.

With the equivalent mixing model, it is straightforward to simulate the performance of the junction array by means of the quantum theory of mixing.

As introduced before, three kinds of thin films (i.e., Nb, Al, NbTiN) were selected as the wiring and ground layers of the thin-film microstrip lines of the junction tuning inductance and the associated impedance transformer. Nb and NbTiN thin films had an energy gap and normal-state conductivity of $\Delta = 1.45 \text{ mV}$ and $\sigma_n = 1.4 \times 10^6 \text{ m}^{-1}$ ($@ 9.2 \text{ K}$) and $\Delta = 2.47 \text{ mV}$ and $\sigma_n = 1.0 \times 10^6 \text{ m}^{-1}$ ($@ 20 \text{ K}$) [5, 6] respectively, while Al films had a ratio of $\sigma_n/k = 2.55 \times 10^{-5} \text{ m}^{-2}$ [7]. The surface impedance of Al films was calculated according to the Reuter–Sondheimer equation (nonlocal anomalous skin effect) [8], while those of Nb and NbTiN films according to the Mattis–Bardeen theory [9]. The dielectric of the microstrip lines for the tuning inductance and impedance transformer had three layers, i.e., $\text{Al}_2\text{O}_3/\text{SiO}_2/\text{Nb}_2\text{O}_5$, which have respective dielectric constants and thicknesses of $9/0.09 \mu\text{m}$, $4/0.27 \mu\text{m}$ and $29/0.10 \mu\text{m}$ (based on the fabrication process of Nb SIS junctions at Nobeyama Radio Observatory, Japan).

Given the fact that the effect of the spreading inductance around the SIS junctions, which is comparable to the junction tuning inductance at submm wavelengths, is no longer negligible, we assumed a short section of microstrip line (lossless, but with the same width as the tuning inductance) before and after each individual SIS junction as an equivalent spreading inductance [10]. For the simulated cases ($5 \mu\text{m}$ wide tuning inductance and $1 \mu\text{m}$ wide junction), the length was found to be $0.7 \mu\text{m}$ in terms of the modelling results for the 660 GHz SIS mixer ($1 \mu\text{m}$) [11].

3. Simulation results

Assuming an IF (1.5 GHz) noise temperature of 15 K and an SIS I–V curve as sisiv-2 ($R_n = 8.88 \Omega$, $V_{\text{gap}} = 2.71 \text{ mV}$ and $R_{\text{gap}}(2 \text{ mV})/R_n = 10.4$), firstly we simulated the receiver noise temperatures (single sideband, SSB) of the five-junction array and parallel-connected twin junctions for 780–950 GHz. Note that the mixing mode was simply assumed as the double-sideband mode (with a low IF frequency assumed) by terminating both the signal sideband and the image sideband with the same embedding impedance (see figure 2). Here we investigated five instances of different ground/wiring layers for the thin-film microstrip lines of the junction tuning inductance and associated impedance transformer, which are Nb/Nb, Al/Al, NbTiN/NbTiN, NbTiN/Al and Nb/Al, respectively. Note that the Nb and Al films were assumed to be $0.6 \mu\text{m}$ thick for the wiring layer and $0.2 \mu\text{m}$ thick for the ground layer, while the NbTiN film $0.6 \mu\text{m}$ thick for the wiring layer and $0.3 \mu\text{m}$ thick for the ground layer. The calculated results are shown in figures 3(a) and (b). It should be pointed out that for each instance, both the impedance transformer (width and length) and the tuning inductance (length only, of a fixed width of $5 \mu\text{m}$) were optimized for the lowest receiver noise temperature and the largest bandwidth (refer to figure 3), and the LO pumping level of the last junction was optimized at each frequency with all the individual SIS junctions dc-biased at a fixed voltage of 2 mV.

Figure 1. Two digitized junction I–V curves (sisiv-1 and sisiv-2) used for simulation.

Figure 2. Simulated embedding impedance for a 780–950 GHz SIS mixer.
Simulation of the performance of a five-junction array for 780–950 GHz

We can see clearly from figures 3(a) and (b) that for all the simulated five instances, the five-junction array has a large bandwidth but a high receiver noise temperature in comparison to the parallel-connected twin junctions. The difference of the receiver noise temperature, however, becomes smaller for the instance with all NbTiN films, even for the instance just with an NbTiN film for the ground layer. Obviously, while having good bandwidth performance, distributed junction arrays can still have a good noise performance beyond the junction’s gap frequency if low-loss thin films (either superconducting or normal metallic) are adopted for the junction array’s tuning microstrip line. It is also interesting to indicate that for both the five-junction array and the parallel-connected twin junctions, the instance of the Al/Al combination has much better noise performance than the Al/Nb one while the difference is not large between the NbTiN/Al and the NbTiN/NbTiN combination.

As the magnetic penetration depth of NbTiN superconducting films (~220 nm) is much larger than that of Nb films (for all Nb junctions we used to have 200 nm thick ground layer), it is necessary to examine the effect of the thickness of the NbTiN ground layer on the mixing performance. Figures 4(a) and (b) show the simulated receiver noise temperature for the parallel-connected twin junctions and five-junction array, respectively, for three different thicknesses of the NbTiN ground layer (i.e., 0.2, 0.3 and 0.4 µm). Obviously, the frequency response of the receiver noise temperature does not change considerably when the thickness is larger than 0.3 µm.

By simulating the performance of the five-junction array and parallel-connected twin junctions with a new junction $I–V$ curve of a larger quality factor (sisiv-1, also plotted in figure 1, $R_n = 6.52 \Omega$, $V_{\text{gap}} = 2.72$ mV and $R_{\text{sub}}(2 \text{ mV})/R_n = 20.6$), we tried to understand how the noise performance of distributed junction arrays changes with the junction quality. Three instances, i.e., Nb/Nb, Al/Al and NbTiN/NbTiN combinations for the ground/wiring layer, were selected for this investigation. As demonstrated in figures 5(a) and (b), the receiver noise temperature was improved significantly, especially for the instance of the Nb/Nb combination. It has been found that the improvement is due mainly to that of the
4. Summary

The performances of a five-junction (Nb) array and parallel-connected twin junctions (Nb) have been thoroughly investigated in the frequency range of 780–950 GHz for the Nb, Al and NbTiN wiring and ground layers of the thin-film microstrip lines of the junction tuning inductance and the associated impedance transformer. It has been found that the five-junction array has a large bandwidth, in general, over the parallel-connected twin junctions and a comparable receiver noise temperature when employing NbTiN films. In addition, the receiver noise temperatures of the two-junction tuning circuits with NbTiN films are less sensitive to the junction quality than with Nb films.

References