ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD I

Wei-Tou Ni a, *

aPurple Mountain Observatory, Chinese Academy of Sciences, 2 Beijing West Road, Nanjing 210008, China

With dramatic technology developments and improvements, deep space laser ranging will become ideal for gravitational-wave detection, and testing relativistic gravity and measuring solar-system parameter to an unprecedented accuracy. ASTROD I is such a mission with single spacecraft; it is the first step of ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) with 3 spacecraft. In this paper, we will present the progress of ASTROD and ASTROD I with emphases on the acceleration noises, mission requirement, charging simulation, drag-free control and low-frequency gravitational-wave sensitivity.

1. Introduction

With Gravity Probe A, 4He λ-point Experiment in Space, Shuttle AMS Experiment, Gravity Probe B, and the development of LISA Pathfinder and LISA, particle and fundamental physics in space becomes the third important area of sciences in space. Satellite laser ranging has reached millimeter level accuracy. Lunar laser ranging has reached centimeter level accuracy. Last year, MESSENGER (MErcury Surface, Space Environment, GEOchemistry, and Ranging) spacecraft before its Earth flyby, using the on-board pay-load MLA (Mercury Laser Altimeter), performed a two-way laser link experiment with NASA Goddard Geophysical and Astronomical Observatory. The experiment gives a laser link solution of 23,964,675,433.9 m range with an uncertainty of 0.2 m [1].

In this Third International Conference on Particle and Fundamental Physics in Space, we have seen a lot of experimental progresses and technological developments on particle detectors. For space interferometry missions, we see important research developments for LISA Mission and its technology demonstrator—LISA Pathfinder. In this short paper, we report on the progress for a deep-space laser-ranging mission concept, ASTROD /ASTROD I [2–8]. (ASTROD: Astrodynamical Space Test of Relativity using Optical Devices) During early nineties of the twentieth century, both pulse and interferometric deep-space laser ranging were proposed to map the solar-system gravity and to test relativistic gravity [6-9 and references therein]. Owing to Geodesy Missions [10] and LISA [11] (Laser Interferometer Space Antenna) Program, improvements in many technologies critical to the tests of gravity are under development - the highly accurate deep space navigation, high precision frequency standards, precise pointing and attitude control, and the drag-free technologies. These will revolutionize the field of experimental gravitational physics. The Centennial of general theory of relativity in 2015 will motivate a significant number of experiments designed to test this theory to unprecedented accuracy. In the following, we will introduce the space mission ASTROD and its precedent ASTROD I.

2. ASTROD

ASTROD consists of a fleet of drag-free spacecraft navigating in the solar system and ranging with one another using optical devices. ASTROD aims to map the solar-system gravity, to measure the related solar-system parameters, to test rela-
tivistic gravity and to detect gravitational waves.

A baseline implementation of ASTROD is to have two spacecraft in separate solar orbit carrying as payload, a proof mass, two telescopes, two 1-2 W lasers, a clock and a drag-free system, together with a similar L1/L2 spacecraft [2,6,7]. The three spacecraft range coherently with one another using lasers to map the solar-system gravity, to test relativistic gravity and to detect gravitational waves. Distances among spacecraft depend critically on solar-system gravity, underlying gravitational theory and incoming gravitational waves. A precise measurement of these distances as a function of time will determine these causes. After 2.5 years, the inner spacecraft completes 3 rounds, the outer spacecraft 2 rounds, and the Earth 2.5 rounds. At this stage two spacecraft will be on the other side of the Sun, as viewed from the Earth, for conducting the Shapiro time delay experiment efficiently. The spacecraft configuration after 700 days from launch is shown in Fig. 1. Whenever there is no ambiguity, we denote this baseline implementation as ASTROD also.

The accuracy and the precision of the measurement depend on the timing accuracy, the inertial sensor/accelerometer noise and the laser/clock stability. As for the timing accuracy, an event timer has been designed at OCA (Observatoire de la Côte D’Azur) in the framework of both T2L2 (Time Transfer by Laser Link) project and the laser ranging activities [12]. At present, the prototype of the OCA timer is fully operational having a precision less than 3 ps, a linearity error of 1 ps rms and a time stability less than 0.01 ps over 1000 s with dead time less than 10 μs. For a mission within the next 10-20 years, a timing accuracy better than 1 ps (300 μm in terms of ranging) can be anticipated. In coherent interferometric ranging, timing events need to be generated by modulation/encoding technique or by superposing timing pulses on the CW laser light. The interference fringes serve as consecutive time marks. With timing events aggregated to a normal point using an orbit model, the precision can reach 30 μm in range. The effective range precision for parameter determination could be better, reaching 3-10 μm using orbit models. Since ASTROD range is typically of the order of 1-2 AU (1.5-3×10^{11} m), a range precision of 3 μm would give a fractional precision of distance determination of 10^{-17}. Therefore, the desired clock accuracy/stability is 10^{-17} over 1000 s travel time. Optical clocks with this accuracy/stability are under research development, having been a hot discussion topic in the First ESA Optical Clock Workshop, June, 2005. Space optical clock is under development for the Galileo project. This development would pave the road for ASTROD to use optical clocks [13]. The present range precision for radio tracking is a couple of meters. The improvement of ASTROD would be 5 orders of magnitude, allowing to test relativistic gravity in the solar system to the 1 ppb (part per billion) realm. To achieve the 1 ppb realm, high precision drag-free performance is a must to guarantee that the test masses of the ASTROD spacecraft follow geodesics in the solar system. In terms of drag-free performance, the ASTROD test mass is...
aimed at residual acceleration noise,

\[S_{\Delta a}(f) = (0.3 - 1) \times 10^{-15} \left[1 + 10 \left(\frac{f}{3 \text{ mHz}} \right)^2 \right] \]

(1)

in units m s\(^{-2}\) Hz\(^{-1/2}\), in the frequency range \(0.1 \text{ mHz} < f < 100 \text{ mHz}\). The lower limit of this spectrum is shown in Fig. 2 together with those of ASTROD I, the LTP and LISA. The spectrum (1) is a factor of 3-10 improvement over the LISA residual acceleration noise goal at 0.1 mHz. This improvement will be achieved by using capacitive sensing or by going to optical method [3,4].

In the capacitive sensing with a gap of 4 mm, the realization of the aimed spectrum depends on the degree that one can compensate the patch effects. The Trento group of the LISA Team has been investigating the possibility of measuring and compensating voltage differences across capacitors to a precision better than 0.01 V [14]. To achieve \(3\times10^{-16} \text{ m s}^{-2} \text{ Hz}^{-1/2}\) at 0.1 mHz, this compensation would require a precision below 0.7 mV.

In our preliminary gravitational modelling of the test mass for ASTROD mission, we considered an outer reference mass outside of the inertial sensor (test mass) [15]. In this way, local gravitational gradients are decreased and light is reflected off the reference mass. As the two telescopes varies in angle, in the 1996 Inauguration Meeting in Seoul of the Asia-Pacific Center for Theoretical Physics, we present a configuration with additional two dummy telescopes sliding on the reference mass to balance the gravitational moments of two telescopes as in Fig. 3. Laser metrology readout is considered in this case [16]. A capacitive sensing option is shown in Fig. 4 and analyzed in detail in [3,4]. Optical sensing have far better sensitivity.

In our preliminary orbit simulation, with the improved accelerometer noise and with 1 ps timing error, we obtain that the uncertainties of measuring \(\gamma\) and \(\beta\) are in the \((1-3)\times10^{-9}\) range, and that for \(J_2\) in the \(10^{-10}\) range [2]. This result demands post-post-Newtonian (2 PN) ephemeris framework to be established for the analysis and simulation of data. Full 2 PN framework are under development [17,18].

Figure 2. Acceleration noise spectral density requirements for ASTROD and ASTROD I. For ASTROD, the lower limit of (1) is illustrated. The LISA and LISA Technology Package (LTP) requirements are also shown in the figure for comparison.

The algorithms for unequal-arm noise cancelation of Armstrong, Estabrook and Tinto are applicable to ASTROD (Fig. 1) [19]. The gravitational-wave sensitivity of ASTROD is shifted to lower frequency as compared to LISA because of ASTROD’s longer armlengths [4,20]. Moreover, because of its orbit modulation, ASTROD could be able to separate the effects due to g-mode oscillation of the Sun and gravitational waves coming from outside the solar system. Among all experiments and proposals, ASTROD has the highest sensitivity to solar g-mode oscillation [20,21]. By measuring the Lense-Thirring effect of the Sun, ASTROD can also measure the solar angular momentum precisely [20].

3. ASTROD I

ASTROD I is the first step toward ASTROD. This mission concept consists of one spacecraft carrying as payload a telescope, five lasers, and a clock, together with ground stations (ODSN:
Optical Deep Space Network) to test the optical scheme of interferometric and pulse ranging in order to give important scientific results [5,6,8]. The basic scheme of the ASTROD I space mission concept is to use two-way laser interferometric ranging and laser pulse ranging between the ASTROD I spacecraft in solar orbit and deep space laser stations on Earth. ASTROD I aims at improving the precision of solar-system dynamics, solar-system constants and ephemeris, and measuring relativistic gravity effects and testing the fundamental laws of spacetime more precisely. ASTROD I also aims at improving the measurement of the time rate of change of the gravitational constant, and detecting low-frequency gravitational waves. A schematic payload configuration of ASTROD I is shown in [8]. The cylindrical spacecraft with diameter 2.5 m and height 2 m has its cylindrical surface covered with solar panels. In orbit, the cylindrical axis will be perpendicular to the orbit plane with the telescope pointing toward the ground laser station. The effective area to receive sunlight is about 5 m² and can generate over 500 W of power. The total mass of the spacecraft is 300-350 kg. That of payload is 100-120 kg with science data rate 500 bps. The spacecraft is 3-axis stabilized. It contains a 3-axis drag-free proof (test) mass and the spacecraft is to follow this proof mass using micro-thrusters. The drag-free performance requirement is 10^{-13} m s$^{-2}$ Hz$^{-1/2}$ between 0.1 mHz and 1 mHz (3-axis). This performance is 30 times less stringent than the LISA drag-free system requirement. In the range measurement, both timing noise and spurious acceleration noise contribute to the uncertainties of parameter determination; the timing noise does not accumulate while the acceleration noise accumulates. The drag-free requirement here would give an error comparable to 10 ps timing error in about one year. A 50×50×35 mm³ rectangular parallelepiped proof mass made from Au-Pt alloy of low magnetic susceptibility ($<5×10^{-5}$) is planned to be used. Titanium housing for the proof mass will remain at a vacuum pressure below 10 μPa. Six-degree-of-freedom capacity sensing for the proof mass will be implemented. The laser ranging is between a fiducial point in the spacecraft and a fiducial point in the ground laser station. The fiducial point in the spacecraft can be a reference mirror with a defined position with respect to the proof mass housing. Incoming light will be collected using a 380-500 mm diameter f/1 Cassegrain telescope. This telescope will also transmit light from the spacecraft with λ/10 outgoing wavefront quality to Earth. Ground laser stations will be simi-
lar to the present lunar laser ranging (LLR) stations or large satellite laser ranging (SLR) stations. In the Yunnan Astronomical Observatory in Kunming, there is a large satellite laser ranging station with a 1.2 m azimuth-elevation reflection telescope. This station is under study in order to be used as a deep space laser station to transmit and receive deep space laser signals [22]. Adaptive optics is also under consideration. Weak light phase locking reached 2 pW [23]. The test mass will be surrounded by electrodes on all six sides to capacitively sense its motion relative to the spacecraft. Micro-thrusters on the spacecraft will then be used to force it to follow the test mass. The ASTROD I residual acceleration noise target is

$$S_{\Delta a}^{1/2}(f) = 3 \times 10^{-14} \left[\frac{0.3 \, \text{mHz}}{f} \right] + 30 \left(\frac{f}{3 \, \text{mHz}} \right)^2$$

(2)

in units m s$^{-2}$ Hz$^{-1/2}$, in the frequency range of 0.1 mHz < f < 100 mHz. This residual acceleration target is compared to noise curves of the LISA-Pathfinder LISA Technology Package (LTP) [24] and LISA [11] in Fig. 2. The strategy here is to have relatively moderate requirements compared to LISA [5,8], and yet to have important scientific goals in astrodynamics and relativity. A torsion pendulum study for prototype inertial sensor for ASTROD I is reported in [25] with a torque resolution of 2 \times 10$^{-11}$ N m Hz$^{-1/2}$ from 1 mHz to 0.1 Hz. High-energy cosmic rays and solar energetic particles (SEPs) easily penetrate the light structure of spacecraft transferring heat, momentum and electrical charge to the test mass [26]. Electrical charging is the most significant of these disturbances. Any charge accrued by the test mass will interact with the surrounding conducting surfaces through Coulomb forces. Further, motion of the charged test mass through magnetic fields will give rise to Lorentz forces. To limit the acceleration noise associated with these forces and meet the residual noise requirement, the test mass must be discharged in orbit. A charging simulation is reported in [27]; the noise requirement will be satisfied with a moderate discharging scheme.

During the orbit design and orbit simulation for ASTROD I, we noted that for Venus swing-by to obtain gravity assistance to reach the other side of the sun sooner, there is a launch window about every 584 days [28]. There is a launch window in 2012, 2013 and 2015. As an example we report the 2012 orbit. This orbit would start at 2:09:36 on March 23, 2012. Two Venus swing-bys are around 107.8 days and 332.3 days after launch. The apparent position of the spacecraft reaches the opposite side of the Sun 365.3 days and 679.1 days after launch. The maximum oneway Shapiro time delays near the two solar oppositions are 0.1172 ms (at 365.3 day) and 0.1196 ms (at 679.1 days) respectively [28]. Assuming a timing error of 10 ps (3 mm ranging accuracy) and an accelerometer noise of 10$^{-15}$ m s$^{-2}$ Hz$^{-1/2}$ at frequency f \sim 100 μHz, and fitting simulated data from the 350th to the 750th day after launch, we obtain the uncertainties of determining relativistic parameters γ and β to be 0.9 \times 10$^{-7}$ and 1.1 \times 10$^{-7}$, respectively, and that for the solar quadrupole parameter J_2 to be 3.8 \times 10$^{-9}$ [28]. This simulation supports our original goals. The timing uncertainty of event timer reaches 3 ps (0.9 mm in ranging) in satellite laser ranging at present. Space qualified versions of similar accuracy are under development. For a ranging uncertainty of 3 mm in a distance of 3\times1011 m (2 AU), the laser/clock frequency needs to be known to one part in 1014. This can be set as a requirement of the space laser/clock or a requirement for laser frequency monitoring through ground clock and modelling. As to ground station jitter, monitoring to an accuracy of 3 mm is required and can be achieved. The atmospheric effects on laser propagation will be monitored and subtracted to mm-level by using 2-color (2-wavelength) ranging (one color for pulse ranging and one for interferometric ranging). These measurement uncertainties are not cumulative in the range determination while the acceleration disturbances accumulate in time in the geodesic deviations. Our acceleration disturbance requirement is consistent with the above requirements. During the Shapiro time measurement, sunlight shield system is important; its basic design is reported in [8,20].

REFERENCES

25. Z. B. Zhou et al., Class. Quantum Grav. 22 (2005) S537-S542.
27. G. Bao et al., "Further computation of the test mass charging and disturbances in ASTROD I" submitted to Nuclear Physics B, this volume.